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Abstract The expression for the transient temperature during damped wave con-
duction and relaxation developed by Baumeister and Hamill by the method of Laplace
transforms was further integrated. A Chebyshev polynomial approximation was used
for the integrand with a modified Bessel composite function in space and time.
A telescoping power series leads to a more useful expression for the transient temper-
ature. By the method of relativistic transformation, the transient temperature during
damped wave conduction and relaxation was developed. There are four regimes to
the solution. These include: (i) a regime comprising a Bessel composite function in
space and time, (ii) another regime comprising a modified Bessel composite function
in space and time, (iii) the temperature solution at the wave front was also developed
separately, and (iv) the fourth regime at a given location X in the medium is at times
less than the inertial thermal lag time. In this regime, the temperature was found to be
unchanged at the initial condition. The solution for the transient temperature from the
method of relativistic transformation is compared side by side with the solution for the
transient temperature from the method of Chebyshev economization. Both solutions
are within 12 % of each other. For conditions close to the wave front, the solution from
the Chebyshev economization is expected to be close to the exact solution and was
found to be within 2 % of the solution from the method of relativistic transformation.
Far from the wave front, i.e., close to the surface, the numerical error from the method
of Chebyshev economization is expected to be significant and verified by a specific
example. The solution for transient surface heat flux from the parabolic Fourier heart
conduction model and the hyperbolic damped wave conduction and relaxation mod-
els are compared with each other. For τ > 1/2 the parabolic and hyperbolic solutions
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are within 10 % of each other. The parabolic model has a “blow-up” as τ → 0, and
the hyperbolic model is devoid of singularities. The transient temperature from the
Chebyshev economization is within an average of 25 % of the error function solution
for the parabolic Fourier heat conduction model. A penetration distance beyond which
there is no effect of the step change in the boundary is predicted using the relativistic
transformation model.

Keywords Damped wave conduction and relaxation · Laplace transforms · Micro-
scale heat transfer · Parabolic and hyperbolic models · Relativistic transformation

Nomenclature
erf (r ) Error function erf(r) = 2√

π

∫ r
0 e−r2

dr

H(τ ) Space integrated temperature
I0(x) Modified Bessel function of the first kind and zeroth order
I1(x) Modified Bessel function of the first kind and first order
J0(x) Bessel function of the first kind and zeroth order
k Thermal conductivity of semi-infinite medium (W · m−1 · K−1)

K0(x) Modified Bessel function of the second kind and zeroth order
m Power series index
p Integration variable
q Heat flux (W ·m−2)

q∗ Dimensionless heat flux q∗ = q
√
τr

(Ts−T0)
√

kρC p

r Change of variable for interval (−1, 1) r = (2ψ−τ−X)
(τ−X)

s Laplace transform variable L f (t) = ∫ ∞
0 f (t)e−st dt . . . t ≥ 0 f (t)

T0 Initial temperature (K)
Ts Surface temperature (K)
Tn(r) Chebyshev polynomial (Tables 1, 2)

u Dimensionless temperature
(

u = (T −T0)
(Ts−T0)

)

X Dimensionless distance X = x√
ατr

Y0(x) Bessel function of the second kind and zeroth order

Greek
α Thermal diffusivity of semi-infinite medium (m2 · s−1)

η Wave transformation, η = τ + X
ξ Wave transformation, ξ = τ − X
ρ Density of semi-infinite medium (kg · m−3)
τ Dimensionless time (t/τr)
τr Relaxation time (s)
θ cos−1(r)
ψ Transformation variable, ψ = p2 − X2
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1 Introduction

A generalized Fourier’s law of heat conduction was sought for six reasons [1].
Boley [2] showed that the addition of the second derivative in time of temperature to
the governing equation is mathematically the only way to remove singularities found
in the solution to parabolic heat conduction equations. Reference to the generalized
Fourier’s law of heat conduction can be traced back to Maxwell [3], Morse and Fesh-
bach [4], Cattaneo [5], and Vernotte [6] postulated this equation independently. This
equation can be used to account for a finite speed of heat. Reviews in the literature of
the use of this equation have been provided by Joseph and Preziosi [7] and Ozisik and
Tzou [8]. Tzou [9] has discussed the micro- to macro-scale behavior. Sharma [10–13]
discussed the manifestation of the damped wave transport and relaxation equation in
industrial applications and provided bounded solutions within the constraints of the
second law of thermodynamics. It was shown that the generalized Fourier’s law of
heat conduction can be derived by including the acceleration term in the free electron
theory, the acceleration term in the Stokes–Einstein theory for molecular diffusion, by
accounting for the accumulation term in the kinetic theory of gases, and combining in
series the Hooke’s elastic element and Newton’s viscous element in the viscoelastic
theory. The relaxation time was found to be a third of the collision time of the electron
and the obstacle. The velocity of heat was found to be identical with the velocity of
mass derived from the kinetic representation of pressure or the Maxwell representation
of the speed of molecules. Some investigators [14] have used the Boltzmann transport
equation and derived both the Fourier’s law of heat conduction and the damped wave
conduction and relaxation equation as special cases. They derive a set of equations
for length scales comparable to the mean free path of the molecule. Ali [15,16] used
statistical mechanics and the kinetic theory and derived the generalized Fourier’s law
of heat conduction for monatomic and diatomic gases. Glass and McRae [17] looked
at the variable specific heat and thermal relaxation parameter. Luikov [18] discussed
the hyperbolic heat conduction equation. He provided a range of relaxation times from
milliseconds to 1000 s. Both heat transfer in turbulent systems and heat conduction in
metals can be represented using the same relaxation parameter.

The relaxation time has been measured by Brown and Churchill [19], Peshkov [20],
and Zehnder and Rosakis [21]. The relaxation mechanism is fundamental to thermal
resonance that cannot be depicted by Fourier’s law of heat conduction [22]. For a
thermal wave speed around 900 m · s−1 in 4340 steel at 480 ◦C, the value of the relax-
ation time was found to be of the order of 10−11 s. A table for the relaxation times
for different materials at different temperatures and pressures is not available in the
literature. Relaxation times for materials with a nonhomogeneous inner structure were
presented by Kaminski [23]. For sodium bicarbonate they report a relaxation time of
29 s, 20 s for sand, and 54 s for ion exchange materials. Mitura et al. [24] claim that
for the falling drying rate period the average time is of the order of several thousand
seconds. For homogeneous substances the relaxation time values range from 10−8 s to
10−10 s; for gases to 10−10 s to 10−12 s; for liquids and dielectric solids as concluded
by Sieniutycz [25]. Mitra et al. [26] presented experimental evidence of the wave
nature of heat propagation in processed meat and demonstrated that the hyperbolic
heat conduction model is an accurate representation on a macroscopic level of the heat
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conduction process in such a biological material. They report a relaxation time of the
order of 16 s.

Some investigators have raised some concerns about violations of the second law
of thermodynamics by the hyberbolic heat conduction equation. Bai and Lavine [27],
Taitel [28], Zanchini [29], and Barletta and Zanchini [30]. Taitel [28] attempted to
obtain an analytical solution to the governing equation and found that the solution
temperature for some values exceeded the boundary temperature indicating a possible
violation of the Clausius inequality. Al Nimr et al. [31] discuss the ‘temperature over-
shoot’ phenomena. Haji Sheik et al. [32] pointed out some anomalies in the hyperbolic
heat equation. Al Nimr et al. [33,34] investigated nonequilibrium entropy production
under the effect of the dual-phase lag heat conduction model. They found that the
entropy production cannot be described using the classical form of the equilibrium
entropy production where using this form leads to the violation of the second law
of thermodynamics. Transient instability, including the intrinsic transition from the
desirable stability, neutral stability to the ultimate unstable response was investigated
by Tzou [35] for a wide spectrum of heating rates. Tzou confirmed that the relaxation
time results from the rate equation within the mainframe of the second law in nonequi-
librium, irreversible thermodynamics. Schnaid [36] attempted to derive the governing
equation for heat conduction with a finite speed of heat propagation directly from
classical thermodynamics. Cai et al. [37] presented algebraically explicit analytical
solutions of hyperbolic type heat conduction equations in three dimensions. Lin and
Chen [38] sought numerical solutions of hyperbolic heat conduction in cylindrical
and spherical systems. Antaki [39] examined the dual-phase lag equation that was
introduced by Tzou and provided an analytical solution for the case of a semi-infi-
nite medium subject to constant wall flux boundary condition. Lewandowsha and
Malinowski [40] attempted to provide an analytical solution of the hyperbolic heat
conduction equation for the case of a finite medium symmetrically heated on both sides
using the method of Laplace transforms. Volz et al. [41] used a molecular dynamics
numerical solution to test the validity of the generalized Fourier’s law of heat conduc-
tion. They confirmed the generalized law when considering heat flux fluctuations at
equilibrium. Temperature overshoot and undershoot were discussed by Tan and Yang
[42] during thermal propagation of thermal waves in a thin film under transient con-
ditions. Tian [43] mentioned that the basic waveform of thermal waves is hyperbolic
waves.

Sharma [1] presented an analytical solution for the case of a finite slab subject to a
constant wall temperature. The final condition in time as the fourth condition for the
second-order hyperbolic PDE governing equation was shown to result in well-bounded
solutions. This indicates that care must be taken for the choice of the conditions used
in the boundaries of space and initial and final time values. They have to be physi-
cally reasonable. For example, at steady state, an equilibrium temperature is attained.
Only for large relaxation times oscillations were found in the solution for tempera-
ture. These oscillations were found to be sub-critical and damped. The time conditions
used by Taitel are unrealistic from the physical realities of heat transfer. That may be
the reason that their solution exhibited a temperature overshoot. Thus, the equations
do not violate the laws of thermodynamics as much as the choice of space and time
conditions as constraints. Sharma [10] also showed that a temperature undershoot can
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occur when Fourier’s law of heat conduction is applied at a steady state in the presence
of a temperature-dependent heat source. This is in violation of the third law of ther-
modynamics. Here again, the choice of the space condition at some arbitrary length is
not sufficient. The critical length beyond which no heat transfer will occur will have
to be identified to keep the solution from violating the third law of thermodynamics.

Baumeister and Hamill [44] presented an analytical solution for the transient tem-
perature during damped wave conduction and relaxation by the method of Laplace
transforms for a semi-infinite medium subject to a constant wall temperature bound-
ary condition. Their solution is for the open interval, τ > X . The solution is in the form
of an integral, where the integrand is a modified Bessel composite function in space
and time of the first order and first kind. Their solution exhibits a sharp discontinuity
at the wave front. Barletta and Zanchini [30] found the solution of the hyperbolic heat
conduction equation in a semi-infinite medium to be in violation of the second law of
thermodynamics for cylindrical domains. Although there are a number of studies dis-
cussing parabolic, hyperbolic models, there is little work done on where and when and
by how much these models differ and where and why they will be the same. Sharma
[1] proposed a novel transformation to obtain an analytical solution for the damped
wave conduction and relaxation equation by the method of relativistic transformation
of coordinates. The solution in Baumeister and Hamill [44] is simplified into a useful
expression using a Chebyshev polynomial approximation in this study. The solution
is compared with the solution from the method of relativistic transformation of the
hyperbolic damped wave conduction and relaxation equation quantitavely as well as
qualitatively. The parabolic and hyperbolic solutions are compared with each other
for the surface flux. It is shown that bounded, co-continuous analytical solutions can
be obtained for the generalized Fourier’s law of heat conduction by using the method
of relativistic transformation of coordinates.

2 Theory

2.1 Parabolic Versus Hyperbolic

Consider a semi-infinite medium at an initial temperature of T0 (Fig. 1). For times
greater than 0, the surface at x = 0 is maintained at a constant surface temperature

Fig. 1 Semi-infinite medium with initial temperature at T0
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at T = Ts, Ts > T0. The boundary and initial conditions are as follows:

t = 0, T = T0 (1)

x = 0, T = Ts (2)

x = ∞, T = T0 (3)

The transient temperature in the semi-infinite medium can be solved using the Fou-
rier parabolic heat conduction equations and the Boltzmann transformation, η = x√

4αt
and shown to be [45]

u = (T − T0)

(Ts − T0)
= 1 − erf

(
x√
4αt

)

(4)

The heat flux can be written as

q∗ = q
√

kρC p/τr (Ts − T0)
= 1√

πτ
exp

(

− x2

4αt

)

(5)

The dimensionless heat flux at the surface is then given by

q∗
s = 1√

πτ
(6)

It can be seen that there is a “blow-up” in Eq. 6 as τ → 0. For applications of
substantial industrial importance such as the heat transfer between fluidized beds to
immersed surfaces [10], there have been found large deviations between experimental
data and mathematical models based upon surface renewal theory. The critical param-
eter in the mathematical models is the contact time of the packets that are composed
of solid particles at the surface. This contact time is small for gas–solid fluidized beds
for certain powder types. Under such circumstances, the microscale time effects may
have been significant. These are not accounted for by the parabolic heat conduction
models. This is one of the motivations for studying the hyperbolic heat conduction
models. Boley [2] has shown that the ballistic term in the governing hyperbolic heat
conduction equation is the “only” mathematical modification to the parabolic heat
conduction equation that can remove the singularity in Eq. 6 at short times.

The governing hyperbolic heat conduction equation in one dimension for a semi-
infinite medium with constant thermophysical properties, ρ, C p, k, and τr , i.e., the
density, heat capacity, thermal conductivity, and thermal relaxation time, respectively,
can be obtained by combining the damped wave conduction and relaxation equation
with the energy balance equation to yield

∂u

∂τ
+ ∂2u

∂τ 2 = ∂2u

∂X2 (7)
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where

u = (T − T0)

(Ts − T0)
; X = x√

ατr
; τ = t

τr
(8)

This is the damped wave conduction and relaxation equation. When the relaxation
time is zero, Eq. 7 will revert to the parabolic partial differential equation, PDE, for
transient conduction from Fourier’s law. When the rate of change of the temperature
with time is much greater than an exponential rise with time, eτ , Eq. 7 will revert
to the wave equation (Tzou [9] and Sharma [10]). Equation 7 is a hyperbolic partial
differential equation, which is second order with respect to space and second order
with respect to time.

Baumeister and Hamill [44] obtained the Laplace transform of Eq. 7 and applied
the boundary condition at ∞, given by Eqs. 2 and 3 to obtain in the Laplace domain,

−
u = exp

(−X
√

s (s + 1)
)

s
(9)

They used the initial time conditions of

t = 0, u = 0 (10)

t = 0,
∂u

∂τ
= 0 (11)

They integrated Eq. 9 with respect to space to obtain

H(s) =
∫

exp
−X

√
s(s + 1)

s
dX = − 1

s
√

s(s + 1)
exp

−X
√

s(s + 1)

s
(12)

The inversion of Eq. 12 was obtained from the Laplace transform tables [10] and found
to be

H(τ ) =
τ∫

0

exp
(
− p

2

)
I0

(√
p2 − X2

2

)

dp (13)

The dimensionless temperature is obtained by differentiating H(τ ) in Eq. 11 with
respect to X , and for τ ≥ X ,

u = ∂H

∂X
= −X

τ∫

X

exp
(
− p

2

) I1(0.5
√

p2 − X2)
√

p2 − X2
dp + exp

(

− X

2

)

(14)

Baumeister and Hamill [44] presented their solution in integral form as shown in
Eq. 14. In this study, the integrand is approximated to a Chebyshev polynomial, and a
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useful expression for the dimensionless temperature is obtained. This is used to com-
pare the results with those obtained by a relativistic transformation (Sharma [10]). The
dimensionless heat flux can be seen to be

q∗ = exp
(
−τ

2

)
I0

(√
τ 2 − X2

2

)

(15)

The surface heat flux can be seen to be

q∗
s = exp

(
−τ

2

)
I0

[τ

2

]
(16)

2.2 Chebyshev Economization Telescoping Power Series

In order to further study the dimensionless transient temperature from the hyperbolic
damped wave conduction and relaxation equation, the integral expression given by
Baumeister and Hamill [44] in Eq. 14 can be simplified using a Chebyshev polyno-
mial [46]. Chebyshev polynomial approximations tend to distribute the errors more
evenly with a reduced maximum error by use of the cosine functions. The set of poly-
nomials, Tn(r) = cos(nθ) generated from the sequence of cosine functions using the
transformation,

θ = cos−1 (r) (17)

represent Chebyshev polynomials (Table 1). Coefficients of the Chebyshev polynomi-

als for the integrand in Eq. 12, I11/2
√

p2−X2√
p2−X2

can be computed with some effort. The

modified Bessel function of the first order and first kind can be expressed as a power
series as follows:

I11/2
√

p2 − X2
√

p2 − X2
=

∞∑

m=0

(
p2 − X2

)m

42k+1 (m!) (m + 1)! =
∞∑

m=0

ψm

42k+1 (m!) (m + 1)! (18)

where ψ = p2 − X2.

Table 1 Chebyshev
polynomials

T0(r) = 1

T1(r) = 2

T2(r) = 2r2 − 1

T3(r) = 4r3 − 3r

T4(r) = 8r4 − 8r2 + 1

T5(r) = 16r5 − 20r3 + 5r

T6(r) = 32r6 − 48r4 + 18r2 − 1
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Table 2 Powers in terms of
Chebychev polynomials

1 = T0(r)
r = T1(r)
r2 = 1

2 (T0(r)+ T2(r))

r3 = 1
4 (3T1(r)+ T3(r))

r4 = 1
8 (3T0(r)+ 4T2(r)+ T4(r))

r5 = 1
16 (10T1(r)+ 5T3(r)+ T5(r))

r6 = 1
32 (10T0(r)+ 15T2(r)+ 6T4(r)+ T6(r))

Each of the ψm terms can be replaced with its expansion in terms of Chebyshev
polynomials as given in Table 2.

The coefficients of like polynomials Ti (r) are collected. When the truncated power
series polynomial of the integrand (Eq. 18) is represented by a Chebyshev polyno-
mial, some of the high-order Chebyshev polynomials can be dropped with negligible
truncation error. This is because the upper bound for Tn(r) in the interval (−1, 1) is
1. The truncated series can then be re-transformed to a polynomial in r with fewer
terms than the original and with modified coefficients. This procedure is referred to
as Chebyshev economization or telescoping a power series.

Prior to expression of Eq. 18 in terms of Chebyshev polynomials, the interval (X, τ )
needs to be converted to the interval (−1, 1). So let,

r = 2ψ − τ − X

τ − X
and ψ = r(τ − X)+ (τ + X

2
, (19)

Furthermore, let

ξ = (τ − X) and η = (τ + X) (20)

Thus,

ψ = rξ + η

2
(21)

Substituting Eq. 21 in Eq.18,

I1

(√
p2−X2

2

)

√
p2 − X2

=
∞∑

m=0

(rξ + η)m

2k42k+1m! (m + 1)! (22)

The right-hand side (RHS) of Eq. 22 can be written as

RHS Eq. 22 = 1

4
+ rξ + η

256
+ (rξ + η)2

49, 152
+ · · · (23)

A truncation error of (rξ+η)3
18,874,368 is incurred in writing the LHS of Eq. 22 as Eq. 23.
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Replacing the r, r2, and r3 terms in Eq. 23 in terms of Chebyshev polynomials
given in Table 1 and collecting the like Chebyshev coefficients, T0, T1, and T2, the
RHS of Eq. 22 can be written as

T0(r)
(

1
4 + η

256 + η2

49,152 + ξ2

98,304

)

+ T1(r)
(
ξ

256 + 2ηξ
49,152

) (24)

The T2(r) term can be dropped with an added error of only ξ2

98,304 . The order of mag-

nitude of the error incurred is thus, O
(

ξ2

98,304

)
. Retransformation of the series given

by Eq. 22 yields

I1

(√
p2−X2

2

)

√
p2 − X2

= 1

4
− X2

128
+ η2

49, 152
+ ξ2

98, 304
+

(
p2 − X2

)

128
(25)

The error involved in writing Eq. 25 is 4.1×10−5ηξ . If the Chebyshev polynomial
approximation was not used for the integrand and the power series was truncated after
the second term, the error would have been 4×10−3r2. Substituting Eq. 25 in Eq. 12
and further integrating the expression for the dimensionless temperature,

u = exp
(− X

2

) + X exp
(− X

2

) (
5
8 + X

16 + η2

24,576 + ξ2

49.152

)

+ X exp
(− τ

2

) (
3
8 − τ

16 − X2

64 + η2

24,576 + ξ2

49,152

) (26)

It can be seen that Eq. 26 can be expected to yield reliable predictions on the transient
temperature close to the wave front. This is because the error increases as a function
of 4.1×10−5ηξ . Far from the wave front, i.e., close to the surface, the numerical error
may become significant.

2.3 Method of Relativistic Transformation of Coordinates

Sharma [4] developed a relativistic transformation method to solve for the transient
temperature by damped wave conduction and relaxation in a semi-infinite medium.
The transient temperature was expressed as a product of a decaying exponential in
time and wave temperature, i.e., u = W exp(−nτ ). This is typical of transient heat
conduction applications. Also, the damping term in the hyperbolic PDE once removed
will lead to an equation of the Klein–Gordon type that can be examined for the wave
temperature without being clouded by the damping component. Let

u = W exp(−nτ) (27)

The basis for this transformation is to recognize that the damped wave conduction
and relaxation equation which is of the hyperbolic type has both a damping compo-
nent and a wave component to it. In order to better study the characteristics of the
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wave component, it would be desirable to remove the damping component from the
governing equation. The transformation given in Eq. 27 was selected to delineate the
damping and wave components of the transient temperature. Furthermore, it is realized
that transient temperatures decay with time exponentially. This leads to the negative
exponent in the exponentiated term.

Then,

∂u

∂τ
= −n exp (−nτ)W + exp (−nτ)

∂W

∂τ
(28)

∂2u

∂τ 2 = +n2 exp (−nτ)W − 2n exp (−nτ)
∂W

∂τ
+ exp (−nτ)

∂2W

∂τ 2 (29)

Equation 7 then becomes

∂2W

∂X2 = W
(
−n + n2

)
+ ∂W

∂τ
(1 − 2n)+ ∂2W

∂τ 2 (30)

It can be seen that at n = 1/2, the governing equation for temperature, Eq. 28, can be
transformed as Eq. 31. At n = 1/2, it can be seen that the governing equation in the
transient temperature reverts to a equation for the wave temperature. This happens to
be a Bessel special differential equation;

∂2W

∂τ 2 − W

4
= ∂2W

∂X2 (31)

This is the governing equation for the wave temperature, W . Once the damping com-
ponent is removed as shown above, the characteristics of the wave temperature can be
better studied. Equation 31 for the wave temperature can be transformed into a Bessel
differential equation by the following substitution. Let

ψ = τ 2 − X2 (32)

This substitution variable ψ can be seen to be a spatio-temporal variable. It is sym-
metric with respect to space and time. It is for the open interval, τ > X . Equation 31
becomes

4ψ
∂2W

∂ψ2 + 4
∂W

∂ψ
− W

4
= 0 (33)

Equation 33 can be seen to be a Bessel differential equation [5]. The solution to Eq. 33
can be seen to be

W = c1 I0

(
1/2

√
τ 2 − X2

)
+ c2 K0

(
1/2

√
τ 2 − X2

)
(34)
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It can be seen that at the wave front, i.e., ψ = 0, W is finite and, therefore, c2= 0. Far
from the wave front and close to the surface, the boundary condition can be written as

X = 0, u = 1, or W = c1exp(τ/2) (35)

As ψ is a spatio-temporal variable, the constants of integration c1 can be a function
of either space or time. Applying the boundary condition at the surface, c1 can be
eliminated between Eqs. 34 and 34 to yield in the open interval, τ > X ,

u =
I0

(√
τ 2−X2

2

)

I0(τ/2)
(36)

In the domain, X > τ , it can be shown [5] that the solution for the dimensional
temperature by a similar approach as above is

u =
J0

(√
X2−τ 2

2

)

I0 (τ/2)
(37)

At the wave front, ψ = 0, Eq. 33 can be solved and

ln(W ) = ψ

16
or W = c3 exp

(
ψ

16

)

The temperature at the wave front is thus, u = c3exp(−τ/2) = c3exp(−X /2). From
the boundary condition at X = 0, c3 = 1.0. Thus, at the wave front,

u = exp

(−X

2

)

(38)

From Eq. 37 the inertial lag time associated with an interior point in the semi-infinite
medium can be calculated by realizing that the first zero of the Bessel function, J0(ψ),
occurs at ψ = 2.4048. Thus,

4
(

2.40482
)

= x2
p

ατr
− t2

lag

τ 2
r

(39)

tlag =
√

x2
p
τr

α
− 23.132τ 2

r (40)

The penetration distance for a given time instant can be developed at the first zero
of the Bessel function. Beyond this point, the interior temperatures can be no less than
the initial temperature. Thus,

Xpen =
√

23.132 + τ 2 (41)
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Thus four distinct regimes can be recognized in the solution for the transient temper-
ature at a point X in the medium from the surface

(i) τ ≤ τlag, u = 0 where

τlag =
√

X2 − 23.132 (42)

(ii) in the open interval, τlag < τ < X

u =
J0

(√
X2−τ 2

2

)

I0 (τ/2)
(43)

(iii) at the wave front, τ = X ,

u = exp

(−X

2

)

(44)

(iv) in the open interval, τ > X ,

u =
I0

(√
τ 2−X2

2

)

I0 (τ/2)
(45)

3 Discussion

The surface heat flux for a semi-infinite medium subject to a constant wall tempera-
ture solved by the Fourier parabolic heat conduction model and the hyperbolic damped
wave conduction and relaxation model is compared with each other using a MS Excel
spreadsheet. Equations 6 and 16 are shown side by side in Fig. 2. The “blow-up” in
the Fourier model can be seen at short times. The hyperbolic model is well bounded
at short times and reached an asymptotic limit of q∗ = 1 instead of q∗ = ∞. There
appears to be a crossover at τ = 1/2. It was found that for τ > 3.8 the prediction of

Fig. 2 Comparison of surface flux from the Fourier parabolic heat conduction and hyperbolic damped
wave conduction and relaxation models
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the hyperbolic model is within 10 % of the parabolic model. It can be seen from Fig. 2
that at large times the predictions of the parabolic and hyperbolic models are the same.
For short times, both qualitatively and quantitatively the predictions of the parabolic
and hyperbolic models are substantially different.

It is not clear what happens at τ = 1/2. The hyperbolic governing equation can be
transformed using the Boltzmann transformation as follows. Let τ = X /

√
τ. Equation

7 becomes

−
(

2γ
∂u

∂γ
+ ∂2u

∂γ 2

)

= 1

τ

(

γ
∂u

∂γ
− γ 2 ∂

2u

∂γ 2

)

(46)

For long times, such as τ > 1/2, the RHS of Eq. 46 can be dropped and the LHS
solved to yield the solution that is identical with the solution of the Fourier parabolic
heat conduction equation, i.e.,

u = 1 − erf

(
X√
4τ

)

(47)

When differentiated and the expression for the flux obtained at the surface and X = 0,
it can be seen that both the parabolic and the hyperbolic heat conduction equations
predict the same reduction of heat flux with time for large times. This is why that
beyond τ > 1/2 the predictions of parabolic and hyperbolic models are close to each
other as seen in Fig. 2. For short times, τ < 1/2, the microscale time effects becomes
important, and when neglected, give rise to a singularity as can be seen from Fig. 2.
So the hyperbolic heat conduction model needs to be used for short-time transient
applications.

The temperature solution obtained after the Chebyshev polynomial approximation
for the integrand in the Baumeister and Hamill solution (Eq. 14) and further integra-
tion is shown in Fig. 3. The conditions selected were typical (τ = 5), and Eq. 26 was
plotted using an MS Excel spreadsheet. This is shown in Fig. 3. The expression for
temperature developed using the method of relativistic transformation (Sharma [4])
for the same condition of τ = 5 is also shown side by side in Fig. 3. It can be seen that
both Baumeister and Hamill solution and solution from the relativistic transformation
are close to each other, within an average of 12 % deviation from each other. It can
also be seen that close to the surface or far from the wave front the numerical errors
expected from the Chebyshev polynomial approximation is large. For such conditions
the expression developed by the method of relativistic transformation may be used.
For conditions close to the wave front, the further integrated expression developed in
this study may be used. It is inconclusive whether the Baumeister and Hamill solu-
tion violates the second law of thermodynamics close to the surface or it is caused
by the numerical errors of integration. The penetration dimensionless distance for
τ = 5 beyond which there is expected no heat transfer is given by Eq. 41 and is 6.94
by the method of relativistic transformation. Baumeister and Hamill solution predicts
a sharp discontinuity past the wave front as shown in Fig. 3. Both the solutions for
the transient temperature for the damped wave conduction and relaxation hyperbolic
equation from the method of Laplace transforms and Chebyshev economization and
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Fig. 3 Temperature distribution in semi-infinite medium by damped wave conduction and relaxation, τ =
5, and parabolic Fourier heat conduction

the method of relativistic transformation are compared against the prediction for the
transient temperature by the Fourier parabolic heat conduction model. The transient
temperature from Chebyshev economization was found to be within 25 % of the error
function solution for the parabolic Fourier heat conduction model. The hyperbolic
model solutions compare well with the Fourier model solution for the transient tem-
perature close to the wave front and close to the surface (to within 15 % of each other).
The deviations are at the intermediate values.

4 Conclusions

The parabolic Fourier model and hyperbolic model for transient heat flux at the surface
for the problem of transient heat conduction in a semi-infinite medium subject to a
constant surface temperature boundary condition were found to be within 10 % of each
other for times t > 2τr (Fig. 2). This checks out with the Boltzmann transformation
and the hyperbolic governing equation reverts to parabolic at long times. At short
times there is a “blow-up” in the parabolic model. In the hyperbolic model there is no
singularity. This has significant implications in several industrial applications such as
fluidized bed heat transfer, CPU overheating, gel acrylamide electrophoresis, etc.

The solution developed by Baumeister and Hamill [44] by the method of Laplace
transforms (Eq. 12) was further integrated into a useful expression. A Chebyshev
polynomial approximation was used to approximate the integrand with a modified
Bessel composite function of space and time of the first kind and first order. The error
involved in Chebyshev economization was 4.1×10−5ηξ . The useful expression for
the transient temperature was shown in Fig. 3 for a typical time of τ = 5. The dimen-
sionless temperature as a function of dimensionless distance is shown in Fig. 3. The
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predictions from Baumeister and Hamill and the solution by the method of relativ-
istic transformation are within 12 % of each other on the average. Close to the wave
front, the error in the Chebyshev economization is expected to be small and verified
accordingly. Close to the surface, the numerical error involved in the Chebyshev econ-
omization can be expected to be significant. This can be seen in Fig. 3 close to the
surface. The method of relativistic transformation yields bounded solutions without
any singularities. The transformation variable, ψ , is symmetric with respect to space
and time. It transforms the PDE that governs the wave temperature into a Bessel dif-
ferential equation. The penetration distance beyond which there is no effect of the step
change in temperature at the surface for a considered instant in time is shown in Fig. 3.
The solutions from the relativistic transformation of coordinates is an improvement
over the Baumeister and Hamill solution and parabolic Fourier solution in depicting
the transient heat events in a semi-infinite medium subject to a step-change in bound-
ary temperature. Four regimes in the transient temperature solution for the hyperbolic
governing equation using the method of relativistic transformation of coordinates are
recognized, and closed form analytical solutions in each regime are given without any
singularities. The transient temperature is also found to be consistent with the second
law of thermodynamics in all four regimes.
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